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Inspired from the existing literature on fractal grids in channels and as an extension to classical oscillating grid experi-
ments with simple Cartesian grids, an original investigation of fractal oscillating grid turbulence is here reported. The
flows generated by a simple Cartesian grid, a fractal Cartesian grid, a fractal square grid and a fractal I-shaped grid are
studied using Particle Image Velocimetry. Three oscillation frequencies (0.5, 1 and 1.5 Hz) and three stroke amplitudes
(0.02, 0.035 and 0.05 m) are considered. The flows are broken down into mean (time averaged), oscillatory (phase
dependent) and turbulent contributions using the triple Reynolds decomposition. The oscillation frequency is found
to linearly impact the intensity of the mean and the oscillatory flows and the root mean square values of the turbulent
fluctuations. In turn, an increase of the stroke amplitude tends to change the topology of the mean and the oscillatory
flows. The turbulence intensity is increased by the fractal nature of the grids and is impacted by the mean flow topology,
especially for the fractal I-shaped grid for which turbulence is transported away from the grid wake region. The study
of the turbulence length scales and spectra reveals that the scales of turbulence mainly depend on the stroke amplitude
and the grid geometry. We thus show how fractal oscillating grids can be used to generate turbulence with tailored
properties for fundamental studies and practical applications.

I. INTRODUCTION

Turbulence is ubiquitous in nature and industrial applica-
tions. Understanding turbulence beyond the isotropic and ho-
mogeneous framework proposed by Kolmogorov27,28,45,57 re-
mains, to this day, a challenge for scientists and engineers
willing to design efficient devices and systems involving tur-
bulent flows interacting with multi-physics phenomenon (heat
and mass transfers, particle transport...). In particular, tur-
bulence is known to be quite efficient in promoting mixing,
which makes it a sought-after mechanism when designing
stirring devices. Yet, optimizing the design of such com-
pounds requires an accurate understanding of turbulence in
non-homogeneous and/or non-isotropic conditions, its pro-
duction mechanisms by the stirring object, its bulk properties,
and the impact of the later on scalar transport. This compre-
hension finally leads to the capability of controlling the flow,
the turbulence properties, and the mixing process.

Many classical configurations in the process industry
involve turbulence generation by one or several rotating
impellers17,49. This design generates turbulence together with
a mean rotational flow, which promotes mixing at both large
and small scales, but at the cost of a significant shear stress im-
posed at the impeller location and vicinity. The latter can be
detrimental when the fluid to be mixed is itself shear-sensitive
or mechanically degradable or if shear-sensitive particles - like
living cells42,62, biochemical molecules14 or crystals10,69 for
example - are suspended and transported in the fluid.

From a more fundamental standpoint, a challenge has al-
ways been to disentangle the effects of mean flow, turbulence,
and coherent structures on transport properties and mixing and

to understand as a first instance turbulence alone in its sim-
plest homogeneous and isotropic form. Fixed grids in wind
tunnels or water channels, either classical8,25, fractal22,31, or
active24,40,64, offer the possibility of generating high Reynolds
number turbulence with significant homogeneity and isotropy
but associated with a strong mean flow and thus relatively
low turbulent-to-mean kinetic energy ratios. Devices such
as oscillating grids19,56,65 or randomly actuated jets6,59 allow
to generate turbulence with low to negligible mean flows in
initially quiescent fluids, though at lower Reynolds number
and with underlying mean flows may still persist and remain
hard to control37. The design of devices allowing fine control
and tuning of flows with well known relative energy contents
of mean flows, large scale coherent structures and turbulence
thus remains to be achieved.

Based on previous studies demonstrating the interest of
fractal geometries for fixed grid turbulence22,31,63,64 and as
an extension of classical oscillating grids, this work proposes
the study of the new concept of fractal oscillating grids and
the turbulent flows they generate with two main objectives.
Firstly, establish how it can be used as a tool for the fundamen-
tal study of turbulence and its interactions with other phenom-
ena. Secondly, pave the way towards the use of fractal oscil-
lating grids as efficient mixing devices for bio-process appli-
cations. In what follows, the general principles of oscillating
grid turbulence in its well known configuration with simple
Cartesian grids are first recalled in section II. Section III then
presents the experimental setup and measurement techniques
used in this study to analyse turbulence properties generated
by four different grids oscillating at various frequencies and
amplitudes in water, through statistical analysis of velocity
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 2

fields obtained by Particle Image Velocimetry (PIV). The re-
sult section (section IV) presents the characterisation of the
mean, oscillatory, and turbulent flows created by the oscilla-
ting grids; a specific focus is made on turbulence properties.
Finally, a conclusion summarises the main findings and high-
lights the potential of such fractal oscillating grids for the two
aforementioned goals, namely controlled turbulence genera-
tion for fundamental studies and mixing intensification.

II. INTRODUCTION TO OSCILLATING GRID SYSTEMS

A. General description of a classical oscillating grid system

Fixed grids, composed of bars with square cross-sections,
were used to study the turbulence they generate in wind and
water tunnels66. This kind of grids can find an application as
flow filters in water or gas channel. The generated turbulence
by the interaction of the wakes behind the grid bars is assumed
to be isotropic, all the more so at high Reynolds numbers, but
weakens as the distance to the grid increases8,25,26. Therefore,
the use of these fixed grids is limited for engineering appli-
cations, like mixing for example. Another more fundamental
drawback of fixed grid turbulence is that this last one is inse-
parable from a strong mean flow (time averaged) from which
it is derived and the turbulent kinetic energy is proportional to
the pressure drop induced by the grid25. Therefore, it appears
impossible to study purely turbulent flow by using fixed grids
or at least with a weak mean flow compared to the turbulence
intensity.

An alternative to fixed turbulence generating grids are the
oscillating grids. These devices generate turbulence with
manageable properties which have been largely studied by ex-
perimental works since several decades65.

An example of the simplest experimental set-up to study
oscillating grid turbulence (OGT) is depicted in figure 1. The
grid, here immersed in a straight prismatic tank containing
water with its base defined by the length of its sides Ltank and
ltank, is composed by crossed bars of length Lbar (if Ltank =
ltank, Lbar is unique) with a cross-section defined by a char-
acteristic dimension lbar (the side length for a square cross-
section). The grid bars shape a mesh of size Lmesh (distance
between the center of two square neighbouring grid openings
or the distance between the lengthwise axis of two neighbou-
ring bars) and is linked to an engine (with a rotation speed
ωengine, expressed in rad/s) by a rod-crank or a crankshaft
system. Thus, the grid is given an oscillating translation mo-
tion normal to its plane around an equilibrium position zeq.
This periodic motion, typically sinusoidal, induces large jet
flows through the grid openings and wakes by the bars travel
in the fluid. Upon grid sweeping, the generated jet flows and
wakes interact and form turbulence propagating away from
the grid and spatially decaying with distance from the grid.
The characteristic of the so-generated turbulence can be easi-
ly controlled thanks to the grid oscillation parameters: the grid
oscillation frequency ν , expressed in Hz and the stroke ampli-
tude (peak to peak) A, expressed in m.

Tank

Grid support bar

Translational guided

piston

Grid support

plate

Connecting rod base

Connecting rod

Eccentric wheel

Figure 1. Simplest oscillating grid experimental set-up with one sim-
ple cross-barred grid (simple Cartesian grid) immersed in water.

B. Properties of the oscillating grid turbulence

The properties of the statistically steady oscillating grid tur-
bulence are classically assessed through the prism of the flow
statistics parameters such as the mean flow velocity #»v , the tur-
bulent velocity fluctuations #́»v , the turbulent length and time
scales, the Reynolds stress, the turbulent Reynolds numbers
and the turbulent kinetic energy.

Thanks to hot film probe experiments, Thompson and
Turner56 were the first authors to propose a relation (equation
1) between the grid oscillation parameters (the stroke ampli-
tude A and the oscillation frequency ν) and the intensity of the
generated turbulence depicted by the root mean square (RMS)
values of the statistically steady turbulent fluctuations of the
horizontal velocity component (v́x)RMS.

(v́x)RMS = 1.4 ν A2.5 zr
−1.5 (1)

This last relation expresses the turbulence intensity spatial de-
cay away from the grid according to a relative vertical coor-
dinate zr; the reference point of this last one lies near the grid
equilibrium position zeq (the definition of this origin point is
discussed later in this section). One may yet question the rele-
vance of this relation as it does not involve geometric parame-
ters of the grid. Thus, again thanks to hot film probes experi-
ments, Hopfinger and Toly19 proposed relations (equations 2
and 3) for the RMS values of the turbulent fluctuations of the
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 3

horizontal and vertical velocity components involving the grid
mesh size Lmesh.

(v́x)RMS = (v́y)RMS = kxy Lmesh
0.5 ν A1.5 zr

−1 (2)

(v́z)RMS =
kz

kxy

(v́x)RMS = kz Lmesh
0.5 ν A1.5 zr

−1 (3)

Hopfinger and Toly19 estimated the proportionality constants
kxy and kz respectively equal to 0.25 and 0.27, while De Silva
and Fernando53,65 proposed kxy = 0.22 and kz = 0.26; in any
case, this indicates the nearly isotropic turbulence generated
by oscillating grid systems despite the slight prevalence of the
vertical velocity component. The proportionality between the
RMS values of the velocity fluctuations and zr

−1 and the tur-
bulence isotropy are largely accepted beyond about twice4,68

or three times7 the grid mesh size Lmesh away from the grid
equilibrium position zeq; another distance often mentioned is
four times the strokes amplitude44 A. The linear relation bet-
ween the RMS values of the turbulent velocity fluctuations
and the frequency38,43 ν remains valid for frequencies below
approximately 7 Hz.

About the turbulence length scales, Thompson and Turner56

established a direct linear relation between the integral length
scale LI (associated to the size of the largest eddies in the sta-
tistically steady flow) and the relative coordinate zr with a pro-
portionality constant kI estimated at 0.1 (see equation 4). This
linear relation was later confirmed by Hopfinger and Toly19

who show a direct linear relation between the proportionality
constant kI and the stroke amplitude A too.

LI ∝ kI zr (4)

An estimation of the smallest turbulence time scale, the Kol-
mogorov time scale tK, was computed thanks to the Hopfinger
and Toly’s results by Yi and Lyn68; it lies between 0.01 and
0.1 s.

While Thompson and Turner56 defined the reference point
of the zr coordinates 0.01 m below the grid equilibrium posi-
tion zeq, Hopfinger and Toly19 proposed a more general defini-
tion: the reference point matches with the zero of the straight
line obtained by linear regression of the integral length scale
data according to the absolute vertical coordinate z. By this
procedure, the reference point lies close to the equilibrium
position of the grid zeq, so close that it is therefore commonly
assumed that the reference point matches with the grid equi-
librium position68 zeq.

By considering ρ as the fluid density (expressed in kg/m3)
and µ as the fluid dynamic viscosity (expressed in Pa s) and
combining the Thompson and Turner’s relation (equation 1)
or the Hopfinger and Toly’s relations (equations 2 and 3) with
the equation 4, one may obtain expressions for the turbulent
Reynolds number ReI based on the RMS value of the turbulent
fluctuations of velocity and the integral length scale of turbu-
lence. The first combination (with the equation 1) leads to
an expression (equation 5) indicating a decay law of ReI with
the distance to the grid equilibrium position while the expres-
sion (equation 6) obtained with the second combination (with

the equations 2 and 3) indicates that ReI is independent of zr.
This second case is more in line with Hopfinger and Toly’s
results19.

ReI =
(v́x)RMS LI ρ

µ
= 1.4 ν A2.5 zr

−0.5 kI ρ µ−1 (5)

ReI = kxy Lmesh
0.5 ν A1.5 kI ρ µ−1 (6)

Again, by replacing the Hopfinger and Toly’s relations for
the RMS values of the turbulent fluctuations of velocity in
the definition of the turbulent kinetic energy44, it is possible
to obtain an expression (equation 7) for the spatial decay of
this last one involving a −2 exponent for the relative coordi-
nate zr. This relation seems consistent with the Hopfinger and
Toly’s results19, especially beyond a distance away from the
grid equilibrium position equal to twice the grid mesh size or
four times the stroke amplitude44,65 A.

Ék =
1
2

(
(v́x)RMS

2 +(v́y)RMS
2 +(v́z)RMS

2
)

⇔ Ék =
1
2

(
2 kxy

2 + kz
2) (Lmesh ν2 A3 zr

−2) (7)

Due to the low values of the Reynolds stress component
ρ v́x v́z, several authors7,44 assume that oscillating grid flows
can be considered shear-free away from the grid wake region.
The Reynolds stresses are almost null 0.1 m away from zeq
and reached their highest value (0.25 Pa) 0.05 m away from
zeq.

In addition, oscillating grid flows are considered shear-free
due to the weak mean (time averaged) flow #»v generated com-
pared to the turbulence intensity35,65. However, the mean flow
is not strictly null and it can interact with the turbulent flow
inducing bias in the spatial turbulence decay away from the
grid wake region. Some oscillating grid set-up configurations
are prone to generate a more intense mean flow: if the grid
solidity16,65 (also called the blockage ratio, the ratio between
the area developed by the bars Sbar and the total area of the
grid Stot, it means the grid bar surface plus the openings sur-
face) is higher than 0.4, if the grid bar ends are such that the
tank walls do not shape a symmetry plane7,16,19,37, if zeq is
larger11 than Ltank, if ν is greater68 than 7 or 8 Hz and if
A is greatly larger61,68 than Lmesh. The origin of the mean
flow seems intrinsic to the oscillating grid experiments in wa-
ter boxes and seems to be linked to the initial condition of a
considered experiment39 and to the limit conditions imposed
by the tank walls36,37.

Oscillating grids were and are still mostly used for experi-
mental research purpose. The properties of the oscillating
grid turbulence were studied to enhance the fundamental un-
derstanding about turbulence mechanisms and, in addition,
these turbulence properties encountered applications in spe-
cific research topic. Among these applications (see the review
by65), studies of interfacial mixing and stratified flows com-
monly found in the environment5,18,19,38,43,48,53,56 and studies
of sediments transport and particles sedimentation9,34,44,58
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 4

were the first investigations involving oscillating grids. More
recent studies were focused on chemical and biochemical
engineering subjects such as the interactions between bubbles
and OGT41,67, the microorganism cultures1,3,50 or the impact
of OGT on biofilms33.

The most intuitive extensions to the simplest oscillating
grid system (with one simple Cartesian grid) are systems com-
posed by two simple grids oscillating in phase or in phase
opposition20,51,52 or multi-grid systems32. Such a system can
come handy for emphasising the region of approximate tur-
bulence homogeneity and isotropy lying between the two os-
cillating grids instead of studying the turbulence decay away
for the grid. But without adding extra grids, another way to
modify the nature of the grid generated flow is to change the
geometry of the grid itself, in an approach similar to what
has been done in the last decades for fixed grids in wind tun-
nels. Thus, the aim of this study is to investigate the flow and
turbulence properties generated by an oscillating grid system
composed with one grid with a fractal geometry. With a sim-
ple Cartesian grid as reference case, three fractal geometries,
described in the following section, were investigated thanks
to a Particle Image Velocimetry (PIV) method, also described
in the following section, to visualise the generated flows. To
the best of the authors’ knowledge, the present work consti-
tutes the first experimental implementation of fractal oscilla-
ting grid flows. The continuation of this article is structured
as follows: the third part describes the experimental apparatus,
the measurement techniques and the data analysis procedures
while the fourth part summarises the main results obtained
with four fractal oscillating grids (described in the third part).

III. EQUIPMENT AND FLOW VISUALISATION METHOD

A. General description of the experimental set-up and of the
grid geometries

To achieve this study of the flow and turbulence generated
by a fractal oscillating grids, an experimental set-up similar
to the classical oscillating grid system depicted in the figure
1 was used. The used glass tank was 0.45 m high and had
a square base with Ltank = ltank = 0.249 m. For each expe-
riment, it was filled with demineralised water in such a way
that zwater = Ltank = 0.249 m; the water volume was there-
fore cubic. Regardless of the grid geometry, the oscillation
frequency or the stroke amplitude, the grid equilibrium posi-
tion was set at the centre of the water volume; implying that
zeq = zwater/2 = 0.1245 m. The grids were hung in the water
by four support rods and a support plate linked to the driving
system by a vertical and translational guided piston. The oscil-
lation frequency was set thanks to a rotation speed-regulated
engine AKM32-E from Kollmorgen and the stroke amplitude
thanks to eccentric wheels with several eccentric holes. For
each studied grid, three oscillation frequencies: 0.5, 1 and 1.5
Hz and three strokes amplitudes: 0.02, 0.035 and 0.05 m were
applied to the oscillating grid system during this experimental
study; thus resulting in 9 possible combinations per grid. The
choices of these oscillation parameters were guided by tech-

nical reasons related to the design of our experimental set-up
(not prone to endure high oscillation frequencies) and con-
siderations about a final biochemical application (culture of
shear-sensitive microorganisms).

Four grids were used: one classical cross barred grid called
the simple Cartesian grid hereinafter, and three grids with
fractal geometries. The design of the fractal grids were firstly
proposed by Hurts and Vassilicos22 who used these fractal
geometries to generate fixed grid turbulence in wind tun-
nels. As the fractal grids are composed by bars with various
width lbar, the generated turbulence can contain directly near
the grid a wide range of scales inducing higher homogeneity
and better mixing properties than classical simple Cartesian
grids22,31,63,64. These grid designs are built iteratively from a
base pattern composed of Nbar bars with a length Lbar;0 and a
width lbar;0. The base pattern is repeated at each fractal ite-
ration i in 4 occurrences around it with scaling factors for the
bar length and width constant for all the iterations, respec-
tively ratioLbar and ratiolbar leading to bars of length Lbar;i and
width lbar;i (see equations 8 and 9). Three fractal base patterns
were used: a cross pattern, a square pattern and a "I" pattern.

Lbar;i = ratioLbar
i Lbar;0 (8)

lbar;i = ratiolbar
i lbar;0 (9)

For each used grid, some design remarks should be men-
tioned. The simple Cartesian grid (used as a reference case)
can be seen as a special case of a fractal cross pattern grid
(therefore called a fractal Cartesian grid) with the width ratio
ratiolbar = 1. Another remark about the two Cartesian grids
is that the length ratio ratioLbar can not be strictly constant
and decreases iteration after iteration, otherwise the bar ends
would not be aligned. Nevertheless, as an approximation, this
length ratio can be considered constant over the different frac-
tal iterations to design the Cartesian grids. About the fractal
I-shaped grid, it should be mentioned that it is longer than it
is wide; it cannot be inscribed in a square (unless if the bar
width is null, which is not practically realisable). In addition,
although this pattern has a horizontal and a vertical axis of
symmetry, it does not present one in a diagonal direction (un-
like the other two base patterns).

As a preliminary design good practice proposed by Corrsin
in 1963 for fixed simple cartesian grids and transposed to
oscillating cases16,65, the grid solidity (the blockage ratio)
should be less than 0.4 to guarantee the stability of the jet
flows and wakes generated by the grid oscillation; otherwise,
the wakes can deflect their axes and secondary flows and in-
homogeneous turbulence can be promoted53. In the present
study, the grid solidity was kept constant among the grids,
which were designed with a solidity of 0.3 as a surface cons-
traint. The second major geometry constraint is the total side
length of the grids bounded by the water tank side length
(0.249 m) and a gap of more or less 0.0075 m (depending
on the grid considered) between the grid ends and the tank
walls which were taken into account. In practice, the four
grids were manufactured in poly(methyl methacrylate) 0.005
m thick plates by laser cutting.
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 5

The notion of mesh size Lmesh is often used to characterise
a grid. For a simple Cartesian grid, it is simply the dis-
tance between the center of two neighbouring grid openings
or between the lengthwise axis of two neighbouring bars. For
fractal grids, this notion is not so direct and therefore Hurst
and Vassilicos proposed the notion of equivalent mesh size
Lmesh;eq (see equation 10) based on the surface developed by
the bars Sbar, the total surface of the grid Stot and the total grid
perimeter Pgrid.

Lmesh;eq =
4 Stot

Pgrid

√
1−

Sbar

Stot
(10)

The table I summarises the properties of the four grids used
for this experimental study of fractal oscillating grid flows.

B. PIV experimental set up

The flow properties were investigated by using two dimen-
sions and two velocity components Particle Image Velocime-
try (PIV). The water velocity was determined in a vertical two-
dimensional plane leading to two-dimensional vector fields of
the fluid velocity involving the two vector components in the
vertical plane46.

The figure 2 in its left-hand part depicts the application
of the PIV method to an oscillating grid system. The fluid
medium was illuminated thanks to a vertical laser sheet, as
thin as possible (about 0.001 m thick, in order to limit the
"out of plane" effects), generated by a continuous laser Ray-
Power from Dantec Dynamics with a wavelength of 532 nm.
For all the investigated cases, the laser sheet cuts the fluid
domain and the grids at their center; this centered laser ver-
tical plane is illustrated on the grid drawings of the table I
by a green line for each grid. The fluid velocity was cap-
tured thanks to light-scattering particles dispersed in the fluid
medium, the motion of which was assimilated to fluid parti-
cles motion and recorded by a camera. The local velocity can
be computed by comparing the position of a same group of
particles on two successive PIV images separated by a time in-
terval ∆t (time-resolved PIV). Thus, our water tank was sown
with 50 µm polyamide particles at a concentration such that
approximately 10 particles appeared per interrogation win-
dow of 32 by 32 pixels on the recorded images. In the worst
case, it means by considering the largest stroke amplitude
and the highest grid oscillation frequency with the polyamide
density60 at 1140 kg/m3, the particle Stokes number46 St is
about 0.0007 indicating that the polyamide particles can be
considered as fluid particles (as St is much less than 1). The
motion of the seeding particles was recorded by a CMOS
(Complementary Metal-Oxide-semiconductor) LaVision Ima-
ger M-lite 5M camera fitted with a band-pass filter at 532 nm
in front of the lens to avoid the impact of parasitic light. Du-
ring the PIV experiments, the recorded PIV images were col-
lected on a computer running the LaVision DaVis software.
This last one was used to control the camera in terms of expo-
sure time, acquisition frequency and recording time. Although
PIV was performed in a single frame mode and used a contin-
uous laser (leading to an unique acquisition frequency), a PTU

X (Programmable Timing Unit, not depicted on the figure 2)
synchroniser, normally used to synchronise a pulsed laser and
a double frame camera, was required as an intermediary be-
tween the computer and the camera to run the DaVis software.
In order to avoid parallax errors, the camera stand was placed
more or less 1.5 m away from the experiment tank and its
optical axis was vertically aligned with the grid equilibrium
position.

The camera was placed in front of the water tank to see
the whole plane defined by the laser sheet in the fluid medium
and vertically aligned with the equilibrium position of the grid
zeq in order to reduce parallax effects. For each experiment,
the resolution of the PIV images, displaying only the square
fluid domain illuminated by the laser sheet, was about 750 by
750 pixels. The exposure time was set at 3 ms while the ac-
quisition frequency νacq depended on the grid oscillation fre-
quency and the stroke amplitude. Indeed, the higher the ima-
ge resolution, the lower the maximum acquisition frequency
allowed by the camera; the image resolution limits the acqui-
sition frequency. Thus, the highest available acquisition fre-
quency, νacq = 180 Hz for an image resolution of 750 by 750
pixels, was applied to the cases with the highest grid oscilla-
tion frequency investigated ν = 1.5 Hz. For the other cases
with lower grid oscillation frequencies (1 or 0.5 Hz), the ra-
tio between νacq and ν , in other words the number of frames
per grid oscillation period, was kept constant at 120 frames
per period of grid oscillation. However, it should be men-
tioned that for the lowest stroke amplitude A = 0.02 m, the
acquisition frequencies were divided by two to increase the
sensitivity in the regions far from the grid where velocities are
typically lower leading to otherwise almost undetectable par-
ticle displacements on two successive images; for A= 0.02 m,
there were therefore 60 frames per period of grid oscillation.
The table II details the acquisition frequencies for the differ-
ent cases of stroke amplitude A and grid oscillation frequency
ν ; this table is valid for the four grids investigated. The recor-
ding time and the total number of PIV images are discussed in
the following paragraph about the flow statistics.

C. Post-processing of the PIV images

To analyse the PIV images and obtain two dimensions and
two components vector fields of the instantaneous fluid ve-
locity, the Matlab app PIVlab55 together with Matlab custom
scripts for pre and post-processing were used. A custom Mat-
lab script allowed to detect and track the grid (assumed to fol-
low a vertical sinusoidal motion) location and mask the grid
and the support bars on each image before the computation
of the velocity fields (as illustrated by the upper right part of
the figure 2). Thus, a moving mask is applied on each PIV
image to hide the grid and the grid support bars from the PIV
algorithm computing the instantaneous vector fields.

A Fast Fourier Transfrom (FFT) based multipass algorithm
was chosen to compute the correlation matrices. Three passes
were applied with decreasing interrogation window sizes and
a 50 % overlap: 64 by 64 pixels for the first pass, 32 by 32
pixels for the second one and 16 by 16 pixels for the third and
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 6

Table I. Geometric characterisation of the four fractal grids used (the little white holes in the complete grid drawings indicate the mounting
points of the grid support bars). For the Cartesian grids, the values in brackets at the ratioLbar line indicate the decrease of the bars length ratios
between the 3 or 4 fractal iterations. The horizontal green lines on the complete grid drawings indicate the centered PIV laser plane positions
relative to the grid.

Simple Cartesian Fractal Cartesian Fractal square Fractal I-shaped

Base pattern

Complete grid

Nbar 2 2 4 3
Lbar;0 [m] 0.2340 0.2340 0.1329 0.1451
lbar;0 [m] 0.0055 0.0095 0.0087 0.0121
ratioLbar [0.488;0.477] [0.479;0.478;0.477] 0.500 0.426
ratiolbar

1.000 0.500 0.500 0.526
Sbar

[
m2
]

0.0164268 0.0164268 0.0164267 0.0155847
Stot

[
m2
]

0.0547560 0.0547560 0.0547555 0.0519491
Solidity 0.3 0.3 0.3 0.3
Pgrid [m] 6.9201 12.9502 14.8217 10.3156
Lmesh;eq [m] 0.0299 0.0142 0.0124 0.0169

Table II. Acquisition frequencies νacq, expressed in Hz, applied for
the different cases of strokes amplitude A and grid oscillation fre-
quencies ν , valid for the four used grids.

A = 0.02 m A = 0.035 m A = 0.05 m
ν = 0.5 Hz 30 60 60
ν = 1 Hz 60 120 120
ν = 1.5 Hz 90 180 180

last one. The correlation peak of an interrogation window was
estimated thanks to Gaussian sub-pixel estimator. A calibra-
tion, performed thanks to a scaling image and the knowledge
of the time interval ∆t between two successive PIV images
(which is just the inverse of νacq), transforms the units of the
vector fields from pixel/frame to m/s. At the end of the pro-
cess, the instantaneous vector fields of fluid velocity have a
resolution of more or less 90 by 90 vectors, leading to space
discretisation steps ∆x and ∆z of more or less 0.0028 m.

Once all the instantaneous velocity fields computed, PIVlab
post-processing functions were applied to remove the erro-
neous vectors. A first median filter threshold was applied
on every instantaneous vector field to compare the two com-

ponents of each vector with the components of its eight di-
rect neighbours. A second standard deviation filter threshold
checks if the two components of each vector lie in an inter-
val of 3 times the standard deviation around the mean value
of all the values of the considered velocity component for
the considered frame. This way, only the erroneous and lu-
dicrous vectors are removed according to the filter criterions;
the valid vectors remain unchanged. Holes in the vector fields
are subsequently filled by linear interpolation (between 3 and
7.5 % of the vectors are interpolated for each instantaneous
flow field). Thus, only the masked regions (on the grid and
the grid support bars) present no vector.

D. Flow statistics and Reynolds triple decomposition

The aim of the present work is to study statistically steady
flow states generated by fractal oscillating grids. The implica-
tions are twofold: firstly, the oscillating grid system must be
in operation for a sufficiently long time before the recording
of the PIV images in stable conditions, to avoid any transient
behaviour. At least 20 minutes after the start-up of the oscil-
lating grid system were allowed before recording PIV images.
Secondly, a sufficient number of PIV images are needed to
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 7

Scientific camera

with PIV filter

Prismatic

experiment tankVertical

laser sheet

Water sown with

PIV particles

Oscillating grid

drive system

Laser beam

generation system

Laser sheet

generating optics

Computer

PIV Raw images PIV masked images

Masking

pre-treatment

PIVlab treatments and

field post-treatments

Post-processed flow fields

Instantaneous flow field Mean flow field

Oscillatory flow field Turbulent fluctuation field

Figure 2. On the left, scheme of the two dimensions and two components PIV set up used to analyse oscillating grid flows. On the right, data
processing: from the PIV raw images to the flow fields obtained by the triple Reynolds decomposition.

obtain converged velocity statistics. Thus, a preliminary con-
vergence study for the flow statistics was performed and can
be found in the appendix of this article. As the result of this
convergence study, all the fractal oscillating grid experiments
were performed by recording 1000 complete grid oscillation
periods.

For all the experiments, fluid velocity data were analysed
through the prism of the Reynolds triple decomposition, as
originally proposed by Hussain and Reynolds47 and subse-
quently applied to oscillatory flows15,29: the instantaneous
flow field #»v (x,y,z, t) is the sum of a time-independent mean
flow #»v (x,y,z), an organised and phase-dependent oscilla-
tory flow #̃»v (x,y,z,ϕ (t)) and random turbulent fluctuations
#́»v (x,y,z, t) (see equation 11). This triple Reynolds decom-
position of the flow fields is illustrated on the lower right part
of the figure 2.

#»v (x,y,z, t) = #»v (x,y,z)+ #̃»v (x,y,z,ϕ (t))+ #́»v (x,y,z, t) (11)

In practice from two-dimensional and two components PIV
images, the mean values of the flow are computed thanks by
ensemble averaging, considering Nfields discrete instantaneous
flow fields (see equation 12). The oscillatory flow is com-
puted by the difference between the mean flow and the phase-
averaged flow for each phase position ϕ(t) computed thanks
to 1000 discrete instantaneous flow fields (because each ex-

periment is composed by 1000 grid oscillation periods) asso-
ciated to the considered phase position (see equation 13). The
instantaneous values of the turbulent fluctuations are easily
deduced from the equation 11 and their RMS values are com-
puted thanks to the equation 14.

vi (x,z) =
∑

Nfields
t=0 (vi (x,z, t))

Nfields
(12)

ṽi (x,z,ϕ(t)) = vi (x,z)− (vi)ϕ (x,z,ϕ(t)) (13)

(v́i)RMS (x,z) =

√
∑

Nfields
t=0 (v́i (x,z, t))

2

Nfields
(14)

Several other classical turbulence features (turbulence spec-
tra, length scales, ...) are discussed and detailed in the results
part of this work in their respective associated sections.

IV. RESULTS

Let us recall that four grids were used for this experimen-
tal study of fractal oscillating grid flows: a simple Cartesian
(considered as a reference case), a fractal Cartesian, a fractal
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 8

square and a fractal I-shaped grid (see table I). For each grid,
the central vertical PIV plane was investigated and three grid
oscillation frequencies ν (0.5, 1 and 1.5 Hz) and three stroke
amplitudes A (0.02, 0.035 and 0.05 m) were applied to the
oscillating grid system; it means 9 experiments per grid.

This results part is divided in sections dedicated to one flow
property: the mean flow, the oscillatory flow, the turbulence
intensity (RMS values of the velocity fluctuations), the turbu-
lence length scales and the turbulence spectra. The impact of
the grid oscillation ν and the stroke amplitude A are firstly dis-
cussed, directly followed by the impact of the grid geometry
for each flow property.

The two-dimensional velocity field contours presented in
the continuation of this article are depicted by colour gradients
and show vertical white rectangles indicating that the associ-
ated points (x,z) were continuously covered by masks during
the PIV treatments; therefore, no velocity values were associ-
ated to these points. The field values in the little regions di-
rectly underneath these white rectangles should be sparingly
read as they were computed with a lower number of instan-
taneous values than the other points in the grid wake region.
The velocity data depicted by these colour gradients were nor-
malised by the maximum grid velocity max

(
vgrid

)
= A π ν

reached when the grid passes through its equilibrium position
(by considering a vertical and sinusoidal movement for the
grid). The vertical coordinates were normalised by the stroke
amplitude A while the horizontal coordinates were normalised
by the water tank side length Ltank. In addition, on these ve-
locity field contours, the stroke amplitude is depicted by two
horizontal outer black dotted lines whose vertical normalised
coordinates zr/A equal 0.5 and −0.5 (with zr the relative verti-
cal coordinates to the grid equilibrium position zeq). The grid
equilibrium position (at zr/A = 0) is depicted too by a hori-
zontal black dashed line and is surrounded by two other black
horizontal lines indicating the thickness of the grid. For clar-
ity reasons, only 1 vector out of 2 was drawn on the vector
fields presented in this result section.

A. Study of the mean flows

For each oscillating grid experiment carried out, the mean
flow was computed thanks to the equation 12 at each spatial
point (x,z) of the vector fields.

The figure 3 presents the vector fields and the mean flow
magnitude for the four grids and the three stroke amplitudes A

with the grid oscillation frequency ν = 1 Hz at the central ver-
tical plane. Only the normalised mean flow fields for ν = 1 Hz
are reported in the results part of this article in order to avoid
overloading results and since a change of the grid oscillation
frequency ν appears to have a linear impact on the mean flow
magnitude. Indeed, this linear impact of the grid oscillation
frequency implies that the normalised (by the maximum grid
velocity max

(
vgrid

)
) mean flow is independent of ν in terms

of magnitude and topology, at least in the frequency range in-
vestigated (ν = [0.5,1,1.5] Hz).

The impact of the stroke amplitude is much less trivial and
non-linear. Indeed, the areas with a strong mean flow seem

emphasised and magnified and some noticeable topological
differences occur for each grid geometry for A = 0.035 and
0.05 m. These phenomena could be linked to the mesh size
(or the equivalent mesh size) of the grids lower than these two
large stroke amplitudes for the four grids (see table I). The
difference between the impact of the stroke amplitude and the
impact of the grid oscillation on the mean flows can be ex-
plained by the fact that a change in the stroke amplitude mod-
ify geometric properties of the experiment apparatus while it
is not the case for the grid oscillation frequency.

Thus, for the simple Cartesian grid, the three central jets
above and beneath the grid bars intersections, clearly reco-
gnisable for A = 0.02 m, tend to merge for larger stroke am-
plitudes. The jets generated by the most outlying bar intersec-
tions seem to be deflected and degenerate into large recircula-
tion loops due to the nearby tank walls. The side recirculation
zones induced by the bar edges in the grid wake region are
growing in size and intensity with the stroke amplitude. Also
in this grid wake region, the mean flow seems to converge to-
ward the grid bar intersections, especially in the central zone
where the recirculations induced by the bar edges become
negligible. This convergence of the mean flow toward the cen-
tre of the water volume is only present horizontally in the grid
wake region and vertically near the vertical tank walls; at any
other point, the mean flow is directed away from the centre of
the volume of water, toward the tank bottom or the water free
surface. Thus, two kinds of mean flow structures could be dis-
tinguished: the ones apparently generated by the grid pattern
itself (the three jets above the bar intersections in this case)
and the ones resulting from the disturbance of the tank verti-
cal walls (the large recirculations). The first ones are clearly
recognisable only with a small stroke amplitude and seem to
vanish or be submerged by the second ones. Those are magni-
fied as the stroke amplitude increases and seem linked to the
interaction between the bar edges and the tank walls.

The mean flows of the fractal Cartesian grid are similar to
the simple Cartesian grid ones except that only one major jet
above and beneath the central bar intersections (relative to the
cross pattern at the first fractal level) seems noticeable and
do not completely merge with other mean flow structures for
large stroke amplitudes. The large recirculation loops due to
the deflection of the jets near the tank walls and the side re-
circulations in the grid wake region generated by the biggest
bar edges are clearly identifiable even with a small stroke am-
plitude; these phenomena seem to highlight the significance
of the bar width. As for the simple Cartesian grid, the conver-
gence behaviour in the grid wake region seems present too but
only directed toward the largest bar intersections related to the
first and the second fractal levels. Thus, the smaller bars and
bar intersections (related to the third and fourth fractal level)
seem to have a negligible impact on the mean flow. Thus,
the significance of the mean flow structures seems clearly de-
pendent on the grid bar width, especially for the mean flow
structures related to the grid pattern, and the large recircula-
tion loops are not only influenced by the tank walls.

The mean flows generated by the fractal square grid are
unique compared to the mean flows produced by the three
other grids: regardless of the stroke amplitude, the mean
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 9
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Figure 3. Vector fields and mean flow magnitude fields for the four grids and the three stroke amplitudes A with the grid oscillation frequency
ν = 1 Hz at the central vertical plane.
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 10

flow is always broadly directed toward the centre of the water
volume; this indicates a quite pronounced three-dimensional
mean flow structure and could be linked to the irregular hole
distribution in the grid pattern (compared to the regular hole
distribution of the Cartesian grids). Indeed, large central jets
in the upper and the lower parts of the water tank are glob-
ally directed toward the grid equilibrium position to finally
converge in the grid wake region between the two grid bars
crossed by the PIV laser plane, like the side recirculation
loops near the tank walls. The use of large stroke amplitudes
(A = 0.035 and 0.05 m) seems to promote the emergence of
large vortices at the limit of the grid wake region around the
bars; the deployment of these vortices outside the square re-
lated to the first fractal level seems constrained by the tank
walls. Conversely to the Cartesian grids, the flow structures
mainly influenced by the tank walls do not seem to prevail
over grid pattern related ones even when the amplitude in-
creases. It could be explained by the irregular hole distribu-
tion of the grid pattern but also and especially by the fact that
the grid bars near the tank walls are the thinnest ones (related
to the last fractal iteration); this reinforces the hypothesis that
the mean flow structures near the tank walls are due to an in-
teraction between the grid edges and the tank walls.

The impact of the stroke amplitude on the mean flow is es-
pecially noticeable for the fractal I-shaped grid: with a small
stroke amplitude (A = 0.02 m), the mean flow is converging
toward the large central bar of the grid above and beneath this
bar outside the grid wake region while it is directed toward
the free surface and the tank bottom for larger stroke ampli-
tudes (A = 0.035 and 0.05 m). For all the stroke amplitudes
investigated, four large counter-rotating curls shape the gen-
eral structure of the mean flow for this fractal I-shaped grid but
their emergence seems depending on the stroke amplitude. In-
deed, for larger strokes (A = 0.035 and 0.05 m), it seems that
these curls are mainly induced by the diverging jets generated
by the central bar of the grid while for a small stroke amplitude
these curls appear to be more the result of a three-dimensional
structure of the mean flow. This specific behaviour tends to
confirm again our previous conclusions about the generation
of the mean flow for the other grids. Indeed, as there is no
grid bar near the tank walls for the fractal I-shaped in the cen-
tral vertical PIV plane, the mean flow seems almost entirely
influenced by the grid pattern and not by the interaction be-
tween the grid edges and the tank walls. Finally, we should
mention that a drop in the mean flow magnitude seems to oc-
cur between A = 0.035 m and A = 0.05 m only for the fractal
I-shaped grid. This drop can be explained by a more distant
vortex shedding by the central grid bar magnifying the dis-
tant mean flow structures away from the grid wake region for
A = 0.05 m or by an impact of the three-dimensional structure
of the mean flow (already noticeable for the smallest stroke
amplitude).

The dependence of the mean flow topology and intensity
on the stroke amplitude, especially for the fractal I-shaped
grid, can be linked to the Keulegan-Carpenter number KC

classically used in the study of oscillatory flows2,13,54. This
number involves a typical velocity of the oscillatory flow (the
grid maximum velocity max

(
vgrid

)
in our case), the time pe-

Table III. Values of the Keulegan-Carpenter number KC for each grid
and stroke amplitude by considering the width of the first fractal ite-
ration bars lbar;0.

A = 0.02 m A = 0.035 m A = 0.05 m
Simple Cartesian grid 11.4 20.0 28.6
Fractal Cartesian grid 6.6 11.6 16.5
Fractal square grid 7.2 12.6 18.1
Fractal I-shaped grid 5.2 9.1 13.0

riod of the oscillatory flow (the inverse of the grid oscilla-
tion frequency ν) and a characteristic length: a bar width lbar.
Therefore, in our case, KC is independent of the grid oscil-
lation frequency (see equation 15). For each grid, by con-
sidering the bar width of the first fractal iteration lbar;0, one
can obtain the values of KC reported in the table III. For the
Cartesian grids and the fractal square grid, no change in the
mean flow topology is reported in the relatively high investi-
gated range of KC numbers. However, for the fractal I-shaped
grid, the lowest KC number value (KC = 5.2) is related to
an inversion of the global mean flow direction, suggesting a
shift in the origin of the mean flow which depends only on
the stroke amplitude and not on the grid oscillation frequency.
The assumed critical KC number value for the simple Carte-
sian, fractal Cartesian and fractal square grids should be re-
spectively below 11.4, 6.6 and 7.2 while this critical value for
the fractal I-shaped grid lies between 5.2 and 9.1. This falls
into the range of critical KC values reported in the literature
in other flow contexts2,13,54.

KC =
max

(
vgrid

)

lbar ν
=

A π

lbar
(15)

B. Study of the oscillatory flows

The oscillatory flow was computed for each oscillating grid
experiment at each available grid phase position ϕ(t) (the total
number of grid phase positions is defined by the ratio between
the acquisition frequency and the grid oscillation frequency)
and spatial point (x,z) of the vector fields by the difference be-
tween the mean flow and the phase-averaged flow (see equa-
tion 13).

The figure 4 presents the vector fields and the normalised
velocity magnitude of the oscillatory flows for two odd phase
positions - the lowest grid position and the equilibrium posi-
tion when the grid is moving downwards - for A = 0.02 and
0.05 m with ν = 1 Hz at the central vertical PIV plane. In
our view, these two grid phase positions are sufficient to ana-
lyse the oscillatory flow as it is simply directed in the opposite
direction by considering respectively the maximum grid posi-
tion and the mean position when the grid is moving upwards.
As for the mean flow, the impact of the grid oscillation fre-
quency on the oscillatory flow topology and normalised ma-
gnitude seems not noticeable in the studied frequency range;
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 11

therefore only the cases with ν = 1 Hz are considered on the
figure 4. As for the mean flow, the influence of the stroke
amplitude is more clear: the organised flow structures are
larger and more intensive for large stroke amplitudes. Howe-
ver, these flow structures remain globally confined in the grid
wake region outside which the oscillatory flows can be con-
sidered almost null. In all cases, the oscillatory flow is more
intense behind the grid, especially for the grid extreme posi-
tions. As we could expect, the oscillatory flow magnitude is
especially important when the grid passes through its equili-
brium position and reaches its maximum velocity.

As the PIV central laser plane laterally cuts the grid bars
for the fractal square and I-shaped grids, the oscillatory flow
primarily consists of counter-rotating vortices around and be-
hind the grid bars. These vortices, which have a horizontal
size comparable to the width of the first fractal iteration bars,
induce general rotary movements around the grid bars in the
grid wake region. Therefore, the oscillatory flow is globally
directed in the opposite direction to the grid movement. A
completely different flow pattern is observed for the Cartesian
grids as the PIV laser plane for the plane 0 cut the central grid
bar in a lengthwise way. Thus, in this configuration, the oscil-
latory flow appears directed in the same direction as the grid
movement and the flow patterns highlight the wakes induced
by the meet of the counter-rotating vortices around and behind
the grid central bars. These wakes are especially intense be-
hind the grid bar intersections and seem to be deflected by the
vortices around the grid bar edges. For the fractal Cartesian
grid, the influence of the central grid bar seems too important
and the vector field resolutions are not sufficient to clearly dis-
tinguish the impact of the intersection between the central bar
and the finer bars.

C. Study of the RMS values of the flow turbulent
fluctuations

The flow turbulent fluctuations #́»v stand for the remaining
part of the flow after removing the mean flow #»v and the os-
cillatory flow #̃»v (for the considered grid phase position ϕ(t))
from the considered instantaneous flow field #»v (see equation
11). As the turbulent fluctuations of the flow depict no clear
flow pattern on instantaneous fields, it is analysed by conside-
ring its RMS values computed thanks to the equation 14.

The figure 5 presents the normalised fields of the RMS va-
lues of the turbulent fluctuations (horizontal and vertical com-
ponents) for A = 0.02 and 0.05 m with ν = 1 Hz at the central
vertical PIV plane. Again and as for the mean and oscilla-
tory flows, the grid oscillation frequency ν has no significant
impact on the topology and normalised RMS values of the tur-
bulent fluctuations in the considered frequency range and this
is why only one grid oscillation frequency is considered on
the figure 5. For the Cartesian grids, the impact of the stroke
amplitude A is more noticeable in the grid wake region for
the magnitude of the RMS values while the topologies remain
similar for small and large stroke amplitudes. An increase of
the stroke amplitude is more noticeable for the fractal square
and I-shaped grids: the turbulent fluctuations are more in-

tense near the grid bars and remain weaker away from the grid
wake region for a small stroke amplitude while they seem to
be transported away from the grid with larger stroke ampli-
tudes. This behaviour seems to be linked to the mean flow.
Indeed, for the fractal I-shaped grid, the increasing magnitude
and the change in direction of the mean flow between small
and large stroke amplitudes are fairly well superimposed on
the propagation of the turbulent fluctuations away from the
grid. Similarly for the fractal square grid, the propagation of
the turbulent fluctuations away from the grid and their intense
value in the grid wake region between the grid bars follow
fairly well the large central jets and vortices around the grid
bars at the limit of the grid wake region. This transport of the
turbulent fluctuations by the mean flow seems present for the
Cartesian grids but to a lesser extent.

The data presented on the figure 5 can be summarised by
averaging the RMS values of the turbulent fluctuations line
by line to obtain the vertical profiles (v́i)RMS (z) for which
Hopfinger and Toly proposed equations (see equations 2 and
3). Thus, the figure 6 depicts these vertical profiles of the
RMS values of the turbulent fluctuations (v́x)RMS and (v́z)RMS
for the three used stroke amplitudes with ν = 1 Hz at the cen-
tral vertical PIV plane. The RMS values of the turbulent fluc-
tuations were not normalised by the grid maximum velocity
and only the cases with ν = 1 Hz were considered on this
figure for clarity reasons (to avoid excessive superimposition
of curves). The Cartesian grids have similar behaviours: the
turbulence intensity reaches its maximum near the grid equi-
librium position and quickly fades away from the grid to a
lesser degree for the fractal Cartesian grid. The turbulence
intensity is always lower for the fractal square and I-shaped
grids in the grid wake region and surroundings than for the
Cartesian grids but the turbulence decay appears less steep,
especially for the fractal I-shaped; at stated in the previous
paragraph, this can be linked to a turbulence transport phe-
nomenon by the mean flow. Thus, in a general way, one can
say that the fractal nature of an oscillating grid tends to pre-
serve the turbulence intensity far from the grid.

The graph on the right of the figure 6 and above the legend
depicts the evolution of the isotropy coefficient, i.e the ratio
(v́x)RMS /(v́z)RMS, along the vertical zr coordinate. Whatever
the grid geometry and amplitude, the values of this indica-
tor lie between 0.75 and 1, which is consistent with the ra-
tio between the Hopfinger and Toly’s constants kz and kxy,
especially for the values given by De Silva and Fernando53

respectively 0.26 and 0.22. The predominance of the verti-
cal turbulent velocity component tends to increase with the
distance from the equilibrium position of the grid until the
influence of the boundary conditions becomes significant at
more or less 0.025 m before the tank bottom or the free sur-
face. Although the grid geometry and the stroke amplitude
seem to have no noticeable impact on the vertical profile of
the isotropy coefficient, we should mention that the turbulence
transport by the mean flow enhances the vertical component
of the turbulent fluctuations for the fractal I-shaped grid with
large stroke amplitudes just before the influence of the boun-
dary conditions becomes significant. Other odd cases are the
fractal square grid, especially with A = 0.02 m, in the grid
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 12

Stroke amplitude A = 0.02 m Stroke amplitude A = 0.05 m
Grid mean Grid minimum Grid mean Grid minimum

position position position position
S

im
pl

e
C

ar
te

si
an

gr
id

F
ra

ct
al

C
ar

te
si

an
gr

id
F

ra
ct

al
sq

ua
re

gr
id

F
ra

ct
al

I-
sh

ap
ed

gr
id

Figure 4. Vector fields and oscillatory flow magnitude fields for the four grids, for the smallest and the largest stroke amplitude investigated
and for two singular grid positions (the grid mean position while it is going down and the grid minimum position) with the grid oscillation
frequency ν = 1 Hz at the central vertical plane. The horizontal white rectangles are due to the mask used during the PIV post processing.
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 13

Stroke amplitude A = 0.02 m Stroke amplitude A = 0.05 m
Horizontal Vertical Horizontal Vertical
component component component component
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Figure 5. Normalised fields of the RMS values of the horizontal and vertical components of the turbulent fluctuations for the smallest and the
largest stroke amplitudes A with the grid oscillation frequency ν = 1 Hz at the central vertical plane.
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 14

wake region where the vertical component of the turbulent
fluctuations seems promoted due to the mean flow direction.

The four graphs on the lower part of the figure 6 stand for
the vertical profiles of the RMS values of the turbulent fluctua-
tions (v́x)RMS and (v́z)RMS with the axis in logarithmic scales
above and under the grid equilibrium position. Unlike their
equivalents with the axis in linear scales, these graphs pro-
vide the possibility to clearly identify the decay rate of the
turbulence intensity with the vertical distance to the grid equi-
librium position and to verify the exponent of the zr coordi-
nates in the Thompson and Turner’s equation or the Hopfin-
ger and Toly’s equations. For this purpose and in addition
to the vertical profiles (v́i)RMS (z), straight lines are depicted
with specific slopes of −0.8, the lowest value of the zr ex-
ponent reported by Nokes43,65, of −1, the classical value of
the zr exponent in the Hopfinger and Toly’s equations (see
equations 2 and 3) and of −1.5, the zr exponent value pro-
posed by the Thompson and Turner’s equation (see equation
1). The curves related to the simple Cartesian grid present a
better agreement with the −0.8 exponent, especially above the
grid equilibrium position while the −1 exponent seems less
accurate or at least on a smaller range of zr values. The −1.5
exponent seems completely inaccurate in every cases. The
impact of the boundary conditions seems important on these
spatial decay law, especially the solid wall of the tank bot-
tom which affects the turbulence decay for the horizontal and
the vertical velocity components while the water free surface
mainly impacts the vertical component. For the three other
fractal grids, the models proposed by Hopfinger and Toly or
Thompson and Turner for the spatial turbulence decay appear
inaccurate as the exponents of zr should be higher than −0.8.
The disagreement between the experimental vertical profiles
of the RMS values of the turbulent fluctuations and the em-
pirical Hopfinger and Toly’s equations can be explain by the
presence of strong mean flows, especially for the three fractal
grids and to a lesser degree for the simple Cartesian grid.

Although only three frequencies and three stroke ampli-
tudes were analysed for the four grids, we propose to ve-
rify the exponents of ν and A in the Hopfinger and Toly’s
law. To achieve this, the RMS values of the turbulent fluc-
tuations (v́x)RMS and (v́z)RMS were normalised by the pa-
rameters of the Hopfinger and Toly’s equations in order to
respectively isolate ν or A. Thus, the relation between
(v́i)RMS zr A−1.5 L−0.5

mesh and ν should be linear with a slope
equivalent to the Hopfinger and Toly’s constants and a null
intercept (set to 0 for the computation of the linear regres-
sion) while the slope and the intercept of the linear regression
between log

(
(v́i)RMS zr ν−1 L−0.5

mesh

)
and log(A) respectively

stand for the A exponent and the logarithm of the Hopfin-
ger and Toly’s constants (set to −0.6576 for the horizontal
component and to −0.5850 for the vertical component du-
ring the regression process). All the points presented on the
figure 7 were obtained by averaging the vertical profiles of
the RMS values of the turbulent fluctuations along the zr axis.
The slopes and the coefficients of determination R2 obtained
from the linear regressions displayed on the figure 7 are sum-
marised in the tables IV and V.

About the frequency dependence, as the coefficients of de-

termination are close to 1, the linear regressions fit quite well
the experimental points for the four grids and the three stroke
amplitudes used. For the simple Cartesian grid only, the three
regression lines overlap indicating that the exponents of the
other parameters (A, especially) are accurate too and the va-
lues of the slopes are in a good agreement with the values
of the Hopfinger and Toly’s constants proposed by De Silva
and Fernando53,65. This linear dependence with the oscillation
frequency ν can explain why it has a low impact on the nor-
malised velocity values; this remark could be extended to the
mean and oscillatory flows as ν seems to have no significant
impact on the topology of the normalised velocity fields in the
assessed range of oscillation frequencies. Since the regression
lines do not overlap for the three other fractal grids, especially
for the fractal I-shaped grid, the Hopfinger and Toly’s laws
seem to be unenforceable for these grids even though the li-
near impact of the frequency seems correct.

As said in the previous paragraph, the 1.5 exponent of A

in the Hopfinger and Toly’s laws seems correct for the sim-
ple Cartesian grid while a value lying between 1.36 and 1.39
seems accurate for the fractal Cartesian grid. For these two
Cartesian grids, the three regression lines overlap confirming
again the linear dependence with the oscillation frequency and
partially validating the Hopfinger and Toly’s laws. The same
phenomenon appears for the fractal square grid with 1.4 for
the A exponent. However for the fractal I-shaped grid, the li-
near regressions seem clearly less accurate than for the Carte-
sian grids and the fractal square grid (in view to the values
of the coefficients of determination). Therefore, the trust we
place in the values of the slopes, indicating the exponent of A

in the Hopfinger and Toly’s laws, should be limited and a sim-
ple power law between the turbulence intensity and the stroke
amplitude may be inaccurate for the fractal I-shaped grid.
This could be explained by the transport of the turbulence by
the mean flow whose intensity and topology change with the
stroke amplitude; for the small stroke amplitude (A = 0.02
m), the mean flow is directed towards the grid equilibrium po-
sition while it is globally directed towards the tank bottom and
the water free surface for larger stroke amplitudes.

D. Study of the turbulence length scales

Based on the turbulent velocity fluctuations #́»v , several
length scales can be defined and linked to the large or small
eddies generated in the flow whose associated kinetic energy
follow the energy cascade highlighted by Kolmogorov45; the
large turbulence structures transferring their kinetic energy to
the smaller ones until viscous effects degrade it. Thus, the in-
tegral, the Taylor and the Kolmogorov length scales are going
to be discussed in this result subsection.

1. Study of the integral length scales of turbulence

The integral length scales of turbulence, associated to the
large turbulence structures (the large eddies), can be obtained
from the auto-correlation curves of the turbulent velocity fluc-
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 15

Figure 6. Vertical profiles of the RMS values of the turbulent fluctuations (v́x)RMS and (v́z)RMS in linear and logarithmic scales and vertical
profiles of the isotropy coefficient (the ratio between (v́x)RMS and (v́z)RMS) for the four grids and the three stroke amplitudes with ν = 1 Hz at
the central vertical plane.

Table IV. Features of the linear regressions between (v́i)RMS zr A−1.5 L−0.5
mesh and ν used to check the exponent of ν in the Hopfinger and Toly’s

laws.

A = 0.02 m A = 0.035 m A = 0.05 m
Slope R2 Slope R2 Slope R2

H
or

iz
on

ta
l

co
m

po
ne

nt Simple Cartesian grid 0.245 0.9978 0.233 0.9961 0.229 0.9989
Fractal Cartesian grid 0.421 0.9979 0.384 0.9992 0.347 0.9981
Fractal square grid 0.437 0.9973 0.391 0.9914 0.335 0.9997
Fractal I-shaped grid 0.362 0.9956 0.971 0.9871 1.364 0.9998

V
er

ti
ca

l
co

m
po

ne
nt Simple Cartesian grid 0.292 0.9957 0.260 0.9961 0.251 0.9995

Fractal Cartesian grid 0.494 0.9993 0.446 0.9998 0.397 0.9970
Fractal square grid 0.495 0.9965 0.453 0.9990 0.387 0.9984
Fractal I-shaped grid 0.388 0.9856 1.163 0.9949 1.647 0.9993
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 16

Figure 7. Linear regressions checking the ν and A exponents in the Hopfinger and Toly’s laws for the four grids used at the central vertical
plane (the dashed lines are relative to the simple Cartesian grid, the solid lines to the fractal Cartesian grid, the dash-dotted lines to the fractal
square grid and the dotted lines to the fractal I-shaped grid).

Table V. Features of the linear regressions between log
(
(v́i)RMS zr ν−1 L−0.5

mesh

)
and log(A) used to check the exponent of A in the Hopfinger

and Toly’s laws.

ν = 0.5 Hz ν = 1 Hz ν = 1.5 Hz
Slope R2 Slope R2 Slope R2

H
or

iz
on

ta
l

co
m

po
ne

nt Simple Cartesian grid 1.509 0.9956 1.511 0.9957 1.521 0.9956
Fractal Cartesian grid 1.365 0.9994 1.371 0.9971 1.380 0.9985
Fractal square grid 1.406 0.9949 1.398 0.9887 1.405 0.9921
Fractal I-shaped grid 1.390 0.9799 1.197 0.9233 1.095 0.9062

V
er

ti
ca

l
co

m
po

ne
nt Simple Cartesian grid 1.521 0.9846 1.526 0.9738 1.535 0.9776

Fractal Cartesian grid 1.378 0.9995 1.383 0.9950 1.389 0.9948
Fractal square grid 1.405 0.9974 1.395 0.9793 1.409 0.9897
Fractal I-shaped grid 1.405 0.9767 1.215 0.9219 1.113 0.8906
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 17

tuations as eddies can be seen as space regions where ve-
locities are correlated. In our case with a two-dimensional
and two components PIV method, four auto-correlation func-
tions can be defined: Rv́x,x and Rv́x,z, respectively the auto-
correlation of the horizontal component of the turbulent velo-
city fluctuations along a horizontal and a vertical direction,
and Rv́z,x and Rv́z,z, their equivalent for the vertical component
of the turbulent velocity fluctuations. Thus for each spatial
point (x,z), the four auto-correlation curves, function of the
shift steps ∆x or ∆z (see equations 16 and 17), can be drawn (in
our case, the curves with positive and negative shift steps were
averaged into a single curve per point) and integral length
scales LI,v́x,x, LI,v́x,z, LI,v́z,x and LI,v́z,z can be obtained by com-
puting the surface under the associated auto-correlation curve
(see equation 18, the integrals were evaluated thanks to the
trapeze method). Finally, the global horizontal and the global
vertical integral length scales can be computed (see equation
19) by assuming a horizontally isotropic turbulence23 because
we have only access to v́x and v́z, not to v́y.

Rv́i,x (x,z,∆x) =
v́i(x,z, t) v́i(x+∆x,z, t)√

(v́i(x,z, t))
2 (v́i(x+∆x,z, t))2

(16)

Rv́i,z (x,z,∆z) =
v́i(x,z, t) v́i(x,z+∆z, t)√

(v́i(x,z, t))
2 (v́i(x,z+∆z, t))2

(17)

LI,v́i, j (x,z) =
∫ ∞

0
Rv́i, j (x,z,∆ j) d∆ j (18)

LI,i =
√

2 LI,v́x,i
2 +LI,v́z,i

2 (19)

The values of the global integral length scales for each spa-
tial point (x,z) can be summarised by averaging them line
by line to obtain the vertical profiles LI,i (z). These vertical
profiles of integral length scales are depicted in the left-hand
part of the figure 8 for the four grids with each oscillation fre-
quency and each stroke amplitude.

In a general way, the oscillation frequency has no signi-
ficant impact on the integral length scales whatever the grid
while the impact of the stroke amplitude seems to depend on
the considered grid geometry. Indeed, for the simple Carte-
sian grid, the curves are more clearly separated according to
the stroke amplitude than for the other grid geometries; the
greater the stroke amplitude, the less the integral length scales
increase away from the grid wake region for the simple Carte-
sian grid. For the three other fractal grids, the nine curves
more or less overlap and no dependence with A seems signi-
ficant or direct. This specific feature of the simple Cartesian
grid compared to the fractal grids can be explained by the frac-
tal nature of these last ones. Indeed, as the fractal grid possess
several bar widths thanks to the different fractal iterations, ed-
dies with a larger range of length scales can be present directly
in the vicinity of the grid wake region leading to a standardisa-
tion of the curves. In addition, it appears quite difficult to link

the order of magnitude of the integral length scales with the
geometric parameters as the stroke amplitudes, the grid mesh
sizes or the grid bar widths since whatever the grid geometry,
the stroke amplitude or the oscillation frequency, the integral
length scale values globally lie between 0.01 and 0.025 m.

About the impact of the boundary conditions, the horizontal
and the vertical integral length scales drop as reaching the tank
bottom or the water free surface due to the vortex compression
near the surfaces21. For the Cartesian grids, the decreases start
between 0.045 and 0.05 m from the tank bottom or the water
free surface. For the fractal square and I-shaped grids, the
decrease of the vertical integral length scales starts more or
less 0.05 m away from the grid equilibrium position while the
horizontal integral length scales drastically drop 0.01 m from
the tank bottom or the water free surface.

Like the inversely proportional relation between the RMS
values of the turbulent velocity fluctuations and the coordinate
zr, Hopfinger and Toly confirmed a linear relation between the
integral length scale and zr initially proposed by Thompson
and Turner. For the Cartesian grids, this linear relation seems
confirmed in the region not affected by boundary conditions
but with a higher proportionality coefficient - between 0.2 and
0.25 instead of 0.1 as initially proposed - especially for the
small stroke amplitude (0.02 m) and beneath the grid equili-
brium position. For the fractal square and I-shaped grids, such
a linear relation can be confirmed in a tiny region between
0.02 and 0.025 m around the grid equilibrium position with a
proportionality coefficient of 0.25.

As indicated in the first section of this article, a turbulence-
based Reynolds number ReI can be defined with the RMS
values of the turbulent velocity fluctuations and the integral
length scales (see equation 6). Thus, the vertical profiles of
this turbulent Reynolds number ReI for the four grids and for
each oscillation frequency and each stroke amplitude are de-
picted in the right-hand part of the figure 8. According to
the definition of this Reynolds number and the Hopfinger and
Toly’s laws for the vertical profiles (v́i)RMS and LI,i, the ver-
tical profiles of ReI should be independent of zr. This is the
case for the simple Cartesian grid with A = 0.02 and 0.035
m and especially for fractal Cartesian grid in a certain range
of zr: from about 0.02 or 0.025 m away from zeq to about
0.020 or 0.03 m from the tank bottom or the free surface. For
the fractal square and I-shaped grids with large stroke ampli-
tudes, linear relations seem to appear between ReI and zr in a
comparable range of zr. As the zr exponent in the Hopfinger
and Toly’s laws and the linear relations between the integral
length scales and zr were not verified, especially for the fractal
square and I-shaped grids, such an independence with zr was
not expected.

2. Study of the Taylor length scales of turbulence

The Taylor length scales of turbulence can be obtained from
the auto-correlation curves of the turbulent velocity fluctua-
tions, matching with the zero of the parabola tangent to the
auto-correlation curve at the intercept. Therefore, it depends
on the decrease of the auto-correlation curve and is associ-
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0 100 200 300 400 500 0 100 200 300 400 500

Figure 8. Vertical profiles of the integral length scales and the associated Reynolds numbers for the four grids at the central vertical plane.

ated to the gradient of the turbulent velocity fluctuations. As
for the integral length scales, four Taylor length scales LT,v́x,x,
LT,v́x,z, LT,v́z,x and LT,v́z,z can be defined. Thanks to the equa-
tion similar to the equation 19, the global horizontal and ver-
tical Taylor length scales can be computed. The left-hand part
of the figure 9 depicts the vertical profiles of the Taylor length
scales for the four grids at the central vertical plane computed
in a similar way than the vertical profiles of the integral length
scales (by averaging the data line by line). As for the integral
length scales, one may define a turbulence-based Reynolds
number ReT by using the Taylor length scales instead of the
integral length scales with the RMS values of the velocity tur-
bulent fluctuations. Thus, the vertical profiles of the turbulent
Reynolds number associated to the Taylor length scales are
depicted in the right-hand part of the figure 9 for the four grids
and for each oscillation frequency and each stroke amplitude.

As for the integral length scale, there is no significant de-
pendence between the Taylor length scales and the grid oscil-
lation frequency and the stroke amplitude except for the sim-
ple Cartesian grid for which the curves are separated accor-

ding to the stroke amplitude: the larger the stroke amplitude,
the lower the Taylor length scales. As the computation of the
Taylor length scales is based on the auto-correlation curves
like the integral length scales, this phenomenon can be ex-
plained by the multiscale nature of the fractal grids too. Glob-
ally, the Taylor length scales lie between 0.01 and 0.015 m
and overlap with the integral length scales in the grid wake
region. Conversely to the integral length scales which rise
away from the grid and drop near tank bottom and the free
surface, the Taylor length scales tend to remain constant and
drop near the boundaries of the fluid domain, except for the
fractal Cartesian grid whose Taylor and integral length scales
follow similar trends. Based on this last remark, the vertical
profiles of the Taylor length scales-based turbulent Reynolds
number ReT are similar to the vertical profiles of the RMS val-
ues of the turbulent velocity fluctuations. Power laws between
ReT and zr (with the zr exponent equal to 1) seem accurate for
the Cartesian grids while linear dependencies seem more ac-
curate for the fractal square grid and especially for the fractal
I-shaped grid for large stroke amplitudes. This last behaviour
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 19

could be linked to the interactions between the turbulence and
the mean flow. Indeed, as the presence of significant mean
flows is known to disturb the turbulence propagation away
from the grid65, the specific mean flows generated by the frac-
tal square and the fractal I-shaped grids mainly depending on
the grid pattern itself (conversely to the Cartesian grids) could
disturb the turbulence propagation in the tank and leading to
this linear behaviour (conversely to the power laws more ac-
curate for the Cartesian grids.

3. Study of the Kolmogorov length scales

The last turbulence length scale, associated to the smal-
lest turbulence structures dissipated by viscous effects, is the
Kolmogorov length scale LK . This last one can be esti-

mated thanks to the mean turbulent dissipation rate ε and by
considering isotropic and homogeneous turbulence (see equa-
tions 20 and 21) as only two velocity components are pro-
vided by the classical PIV method12,45. The spatial deriva-
tives of the turbulent velocity fluctuations were computed by
a central difference scheme of the finite difference method
(scheme decreasing the discretisation error compared to first
order schemes like the forward or the backward difference
schemes). As a reminder, the PIV image resolution is 750
by 750 pixels resulting in a vector field resolution of 90 by 90
vectors. Therefore, the vector field resolution is, in terms of
real length, about 0.0028 m which is not sufficient to properly
capture the smallest turbulence structures. It should thus be
reminded at this point that what is presented below only deals
with estimations of the Kolmogorov length scales (based on
assumptions).

ε =
3 µ

ρ

((
∂ v́x

∂x

)2

+

(
∂ v́z

∂ z

)2

+

(
∂ v́x

∂ z

)2

+

(
∂ v́z

∂x

)2

+2

(
∂ v́x

∂ z

∂ v́z

∂x

)
+

2
3

(
∂ v́x

∂x

∂ v́z

∂ z

))
(20)

LK =
4

√
µ3

ρ3 ε
(21)

From the equations 20 and 21, a value for the Kolmogorov
length scale can be assigned to each spatial point (x,z) and
the figure 10 displays the vertical profiles of the Kolmogorov
length scales for each grid, each oscillation frequency and
each stroke amplitude obtained by averaging the data line per
line.

Conversely to the integral and the Taylor length scales, the
curves of the Kolmogorov length scales do not overlap each
other and the more intense the turbulence (i.e. the higher the
global RMS values of the turbulent velocity fluctuations), the
lower the global Kolmogorov length scale. In addition, the
more intense the turbulence, the flatter the curves indicating
that the Kolmogorov length scales seem to be limited to mi-
nimum values. To illustrate this, the figure 11 displays the mi-
nimum value of the vertical profiles of the Kolmogorov length
scale for each grid function of an oscillation-based Reynolds
number23,35 Reosc incorporating the oscillation frequency ν
and the stroke amplitude A. Power laws were applied on the
data points indicating that high oscillation frequencies and
large stroke amplitudes are required to reach low Kolmogorov
length scales. The difference between the curves related to
the Cartesian grids and the ones related to the two other frac-
tal grids seem to lie in the way the laser plane cuts the grid
bars: in the lengthwise direction for the Cartesian grids and
laterally for the fractal square and I-shaped grids.

Reosc =
ρ ν A2

µ
(22)

E. Study of the turbulence spectra

Spatial and time spectra of turbulence can be used to
summarise information on the turbulence length scales and
to assess the isotropic and homogeneous nature of turbu-
lence. Four spatial spectra of turbulence, function of the
wave number (inverse of a length, a kind of spatial fre-
quency), are obtained by taking the discrete Fourier trans-
form of the auto-correlation curves v́i(x,z, t) v́i(x+∆x,z, t)

and v́i(x,z, t) v́i(x,z+∆z, t), while two time spectra of turbu-
lence, function of the time frequency (inverse of a time), can
be obtained by taking the discrete Fourier transform of the
time auto-correlation curves v́i(x,z, t) v́i(x,z, t +∆t). To high-
light the frequency content of the oscillatory flow, spatial and
time spectra can be obtained from the auto-correlation curves
of the sum of the oscillatory flow and the turbulent velocity
fluctuations ṽi(x,z, t)+ v́i(x,z, t). The spectra resolution and
length depend on the auto-correlation increments ∆x, ∆z and
∆t (the smaller the increments, the finer the spectra resolu-
tion), on the fluid domain size (Ltank) for the spatial spectra
and on the time series length for the time spectra. In practice,
the spatial and time spectra were obtained by applying the
Fast Fourier Transform (FFT) algorithm of Matlab on each
auto-correlation curve associated to each spatial point (x,y).
We should mention a specificity for the time spectra: as the
moving masks used to hide the grid and the grid support bars
during the PIV treatment induce missing data in the time se-
ries of the masked points, no time spectrum can be computed
for these points contained in the grid wake region.

The figure 12 presents the different global spatial spec-
tra of the auto-correlation curves for the four grids and for
each stroke amplitude with the grid oscillation frequency
ν = 1 Hz (only the spectra with this grid oscillation fre-
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 20

Figure 9. Vertical profiles of the Taylor length scales and the associated Reynolds numbers for the four grids at the central vertical plane.

quency were displayed for legibility concerns and as the spec-
tra shapes seem not affected by ν). Each global spectrum
was obtain by averaging all the spectra over the space do-
main (x,y). Only the spectra related to the auto-correlations
of the horizontal (respectively vertical) velocity components
along the x (respectively z) axis were considered and dis-
played. The straight inclined black line on each graph in-
dicates the classical −5/3 slope of isotropic turbulence45;
the turbulence spectra for the fractal grids are more closely
aligned with this line between the wave numbers 10 and 100
m−1, especially for the fractal square and I-shaped grids. The
spectra related to the auto-correlation of the sum of the tur-
bulent fluctuations and the oscillatory flow can be used to
highlight the size of characteristic flow structures. Thus,
the grid mesh size Lmesh (indicated by vertical red lines on
the left graphs of the figure 12) of the simple Cartesian
grid is emphasised on the spectra of the auto-correlations
(v́x(x,z, t)+ ṽx(x,z, t)) (v́x(x+∆x,z, t)+ ṽx(x+∆x,z, t)) (the
dashed curves on the left graphs of the figure 12) whatever
the stroke amplitude while it is not the case for the other

fractal grids (with lower grid mesh sizes due to their frac-
tal nature). For these last ones except the fractal I-shaped
grid, the corresponding spectra indicate small peaks for lower
wave numbers apparently related to the quarter of the wa-
ter tank side length Ltank = 0.249 m or the distance between
the largest central bar (fractal iteration 0) and the bar of the
first fractal iteration for the fractal Cartesian grid. No dis-
tinctive horizontal flow structure length seems highlighted
on the spectra of the fractal I-shaped grid. About the spec-
tra of (v́z(x,z, t)+ ṽz(x,z, t)) (v́z(x,z+∆z, t)+ ṽz(x,z+∆z, t))
(the dashed curves on the right graphs of the figure 12), the
highlighted vertical flow structure lengths seem linked to the
stroke amplitude: the sizes of the flow structures created in the
grid wake, smaller than the grid stroke amplitude, are high-
light by small bumps in the the spectra especially for A = 0.02
m whatever the grid. This phenomenon seems mitigated for
larger stroke amplitudes which can be explained by the easier
disengagement of the eddies behind the grids. To conclude
about these space spectra, we should temperate our interpreta-
tions due to the investigated range of wave numbers limited by
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 21

Figure 10. Vertical profiles of the Kolmogorov length scales for the four grids at the central vertical plane.

Figure 11. Minimum values of the Kolmogorov length scales for the four grids at the central vertical plane function of the oscillation-based
Reynolds number (the dashed curve stands for the power law regression of the data related to the simple Cartesian grid, the solid curve to the
fractal Cartesian grid, the dash-dotted curve to the fractal square grid and the dotted curve to the fractal I-shaped grid).

the space resolution of the original flow fields (the maximum
wave numbers equal 1/(2 ∆x) or 1/(2 ∆z)); thus the ranges
of the Taylor and Kolmogorov length scales are not depicted.

The figure 13 displays the different time spectra of the auto-
correlation curves for the four grids and for each stroke am-
plitude with the grid oscillation frequency ν = 1 Hz (only the
spectra with this grid oscillation frequency were displayed for
legibility concerns and as the spectra shapes seem not affected
by ν). As for the space spectra above, each global time spec-
trum was obtained by averaging all the available spectra over
the space domain (x,y). As for the space spectra, the straight
inclined black line on each graph indicates the classical −5/3
slope of isotropic turbulence. The alignments between this
straight line and the time spectra are less marked than in the
cases of the space spectra; the slopes of the time spectra are
closer to −2 than to −5/3. The ranges of the integral time
scale, defined in a similar way to the integral length scale as
the surface below the time auto-correlation curves (see equa-
tion 23), are displayed beneath the time spectra of turbulence

on the figure 13 while the ranges of the Kolmogorov time
scales45, estimated thanks to the mean turbulent dissipation
rate ε (see equation 24), are depicted above the time spectra
of turbulence. The fractal nature of the grids seems to increase
the separation between the ranges of the integral time scales
and the Kolmogorov time scales. The ranges of the integral
time scales are globally centered around the grid oscillation
frequency (the first peak in the time spectra related to the sum
of the turbulent fluctuations and the oscillatory flow) while the
higher harmonics of the oscillatory flow lie in the ranges of the
Kolmogorov time scales.

tI,v́i
(x,z) =

∫ ∞

0
Rv́i,t (x,z,∆t) d∆t (23)

tK =

√
µ

ρ ε
(24)
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 22

Figure 12. Global space spectra obtained from the auto-correlation
curves of the turbulent velocity fluctuations and of the sum of these
last ones and the oscillatory flow for each grid and the three stroke
amplitudes with ν = 1 Hz at the central vertical plane. The double ar-
row lines below the spectra indicate the range of frequencies related
to the integral length scales; their colors are related to the associa-
ted stroke amplitude. The straight inclined black line on each graph
has the classical −5/3 slope. The vertical red line on the graphs re-
lated to the horizontal velocity components (on the left) stands for
the wave number of the mesh size Lmesh of the considered grid while
the vertical lines on the graphs of the vertical velocity component (on
the right) indicate the wave numbers of the associated (by the color)
stroke amplitude.

V. CONCLUSION

In this work, we report the first experimental characterisa-
tion of turbulent flows generated by fractal oscillating grids.
Time-resolved two-dimensional and two components PIV was
used to probe the flow produced by four grids - a simple Carte-
sian grid (our reference case), a fractal Cartesian grid, a fractal
square grid and a fractal I-shaped grid - oscillating with three
stroke amplitudes A (0.02, 0.035 and 0.05 m) and three fre-
quencies ν (0.5, 1 and 1.5 Hz) at the central vertical plane of a
cubic water volume . Triple Reynolds decomposition was ap-

plied to characterise mean (time averaged), oscillatory (phase
dependent) and turbulent velocity components. Several flow
properties were studied to draw a general description of the
flows generated by fractal oscillating grids with low oscilla-
tion frequencies: the intensity and the topology of the mean
and the oscillatory flows, the root mean square (RMS) va-
lues of the turbulent velocity fluctuations, the turbulent length
scales and the turbulence spatial and time spectra.

In the considered range of frequencies (from 0.5 to 1.5 Hz),
the oscillation frequency globally acts linearly on the intensity
of the mean flow, the oscillatory flow and the turbulent veloc-
ity fluctuations. It is shown by the velocity fields (normalised
by the maximum grid velocity max

(
vgrid

)
=A π ν) of the flow

statistics displaying no significant difference of intensity for
the different oscillation frequencies by considering the same
grid and the same stroke amplitude. Another clue in favour of
this linear dependence between the grid oscillation frequency
and the flow statistics intensity is the validation, for each grid,
of the direct proportionality between the RMS values of the
turbulent velocity fluctuations and the oscillation frequency
highlighted in the Hopfinger and Toly’s laws. Conversely to
the oscillation frequency, an increase of the stroke amplitude
impacts the flow topologies and intensities: for large strokes
(0.035 and 0.05 m), the mean and oscillatory flow structures
present with a small stroke (0.02 m) are emphasised (espe-
cially for the Cartesian grids and the fractal square grid) and
the orientation of the mean flow can be inverted for the fractal
I-shaped grid indicating a change in the flow regime with A (in
relation with the KC number). The proportionality between
the RMS values of the turbulent velocity fluctuations and A1.5

indicated in the Hopfinger and Toly’s laws is well verified for
the simple Cartesian grid while different exponents seem more
accurate for the fractal Cartesian and the fractal square grids
(between 1.36 and 1.4). A power law with A seems inaccurate
for the fractal I-shaped grid as the mean flow magnitude and
global direction can affect the turbulence transport.

For each grid and whatever the oscillation frequency and
the stroke amplitude, the mean flow is not negligible anywhere
in the flow fields, as expected from the unfavorable conditions
purposely chosen in that sense. The oscillatory flow is the
most energetic contribution to the global flows but is essen-
tially constrained in the grid wake region. The mean flow is
generally oriented toward the tank bottom and the water free
surface except for the fractal square grid for every A and ν and
the fractal I-shaped grid at low stroke amplitude (A = 0.02 m)
where the mean flow is globally directed toward the core re-
gion of the water volume. The oscillatory flow is mainly com-
posed of counter-rotating vortices around and behind the grid
bars.

The power laws indicated by the Hopfinger and Toly’s laws
for the vertical profiles of the RMS values of the turbulent
velocity fluctuations were verified with an exponent for the
vertical coordinates zr (relative to the equilibrium position of
the grid zeq) lying between −0.8 and −1 for the simple Carte-
sian grid while these relations do not hold for the three other
fractal grids. This can be explained by significant mean flows
transporting turbulence away from the grid wake region, es-
pecially for the fractal I-shaped grid. In a general way, the
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Experimental characterisation of the flow and turbulence generated by fractal oscillating grids 23

Figure 13. Global time spectra obtain from the auto-correlation curves of the turbulent velocity fluctuations and of the sum of these last ones
and the oscillatory flow for each grid and the three stroke amplitudes with ν = 1 Hz at the central vertical plane. The double arrow lines below
the spectra indicate the ranges of frequencies related to the integral time scales while the double arrow lines above the spectra stand for the
ranges of frequencies related to the Kolmogorov time scales; their colors are related to the associated stroke amplitude. The straight inclined
black line on each graph has the classical −5/3 slope.

fractal character of the grids tends to increase the turbulence
intensity and its propagation in the fluid medium except for
the fractal square grid due to the mean flow converging in the
core region.

Whatever the grid, the integral and Taylor length scales of
turbulence respectively lie between 0.01 and 0.025 m and bet-
ween 0.01 and 0.015 m with no clear link with the stoke am-
plitude or the oscillation frequency as all the vertical profiles
tend to overlap each other. A notable exception is reported for
the simple Cartesian grid, for which the larger the stroke am-
plitude, the smaller the integral and the Taylor length scales
away from the grid wake region. Conversely, the higher the
oscillation frequency or the larger the stroke amplitude, the
lower the Kolmogorov length scales globally lying between

0.00025 and 0.0015 m. The fractal nature of the grids however
tends to flatten the vertical profiles of the turbulence length
scales, especially for the fractal square and I-shaped grids.

Although the flow field resolution limits the length of the
turbulence space spectra, the global space spectra indicate a
good agreement with the classical −5/3 slope of isotropic tur-
bulence while the global time spectra indicate slopes closer to
−2 whatever the grid geometry and the oscillation parameters
ν and A.

With all that in mind, one may choose a grid and oscillation
parameters to achieve a desired flow topology and magnitude
(for the mean and the oscillatory flows and for the turbulent
fluctuations) with manageable turbulence length scales (es-
pecially the Kolmogorov length scales): the frequency acts
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linearly on the magnitude of the flows without significantly
affecting the integral and Taylor length scales. In turn, the
amplitude can affect the spatial distribution and propagation
of the flows. The minimum Kolmogorov length scales are
manageable by the oscillation-based Reynolds number (com-
bining A and ν). The choice of the fractal pattern remains the
most impacting about all these flow properties.

It is worth remembering that only the central vertical plane
of each grid was analysed in every cases and analyses of
other PIV planes should be considered to fully characterise
the flows generated by fractal oscillating grids and their three-
dimensional structure. To that effect, three-dimensionnal Par-
ticle Tracking Velocimetry (PTV) experiments and numeri-
cal simulations could complete this study of fractal oscillating
grid flows. The ranges of the experimental parameters (the
stroke amplitude, the oscillation frequency, the grid blockage
ratio, the number of grids, ...) could be expanded in further
works to assess the limits and the validity of our conclusions.
This work still provides basis and a set of indications on con-
ditions to manage the flow topologies, magnitudes and length
scales and to achieve optimal turbulence intensity enhance-
ment and spreading with fractal oscillating grids, suggesting
promising potential applications to chemical and biochemical
processes as mixing devices.
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Appendix: Flow statistics convergence study

This appendix is dedicated to the convergence study of
the flow statistics mentioned in the fourth point "Flow statis-
tics and Reynolds triple decomposition" of the third section
"Equipment and flow visualisation method" of this article.
This convergence study was performed by considering the
number of grid oscillation periods for the central plane of the
simple Cartesian grid with A = 0.05 m, ν = 0.5 Hz. The fig-
ure 14 summarises the results of this convergence study by
considering the flow statistics data obtained from a Reynolds
triple decomposition: the mean flow and the RMS values of
the oscillatory flow and the turbulent fluctuations. This con-
vergence study indicates that 1000 grid oscillation periods are
largely sufficient for all statistical quantities to converge.
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